
Mechanical Verification of a Garbage Collector

Klaus Havelund

NASA Ames Research Center
Recom Technologies

Moffett Field, California, USA
havelund@ptolemy.arc.nasa.gov

http://ic-www.arc.nasa.gov/ic/projects/amphion

Abstract. We describe how the PVS verification system has been used to ver-
ify a safety property of a garbage collection algorithm, originally suggested by
Ben-Ari. The safety property basically says that “nothing but garbage is ever col-
lected”. Although the algorithm is relatively simple, its parallel composition with
a “user” program that (nearly) arbitrarily modifies the memory makes the veri-
fication quite challenging. The garbage collection algorithm and its composition
with the user program is regarded as a concurrent system with two processes
working on a shared memory. Such concurrent systems can be encoded in PVS
as state transition systems, very similar to the models of, for example, UNITY
and TLA. The algorithm is an excellent test-case for formal methods, be they
based on theorem proving or model checking. Various hand-written proofs of the
algorithm have been developed, some of which are wrong. David Russinoff has
verified the algorithm in the Boyer-Moore prover, and our proof is an adaption
of this proof to PVS. We also model check a finite state version of the algorithm
in the Stanford model checker Murphi, and we compare the result with the PVS
verification.

1 Introduction

In [18], Russinoff uses the Boyer-Moore theorem prover to verify a safety property of
a garbage collection algorithm, originally suggested by Ben-Ari [1]. We will describe
how the same algorithm can be formulated in the PVS verification system [16], and
we demonstrate how the safety property can be verified. An earlier related experiment
where we verified a communication protocol in PVS is reported in [11].

The garbage collection algorithm, the collector, and its composition with a user
program, the mutator, is regarded as a concurrent system with (these) two processes
working on a shared memory. The memory is basically a structure of nodes, each point-
ing to other nodes. Some of the nodes are defined as roots, which are always accessible
to the mutator. Any node that can be reached from a root, chasing pointers, is defined
as accessible to the mutator. The mutator changes pointers nearly arbitrarily, while the
collector continuously collects garbage (not accessible) nodes, and puts them into a free
list. The collector uses a colouring technique for bookkeeping purposes: each node has
a colour field associated with it, which is either coloured black if the node is accessi-
ble or white if not. In order to cope with interference between the two processes, the
mutator colours the target node of the redirection black after the redirection. The safety

property basically says that nothing but garbage is ever collected. Although the collec-
tor algorithm is relatively simple, its parallel composition with the mutator makes the
verification quite challenging.

An initial version of the algorithm was first proposed by Dijkstra, Lamport, et al.
[7] as an exercise in organizing and verifying the cooperation of concurrent processes.
They described their experience as follows, citing [18]:

Our exercise has not only been very instructive, but at times even humiliating,
as we have fallen into nearly every logical trap possible . . . It was only too
easy to design what looked – sometimes even for weeks and to many people
– like a perfectly valid solution, until the effort to prove it correct revealed a
(sometimes deep) bug.

Their solution involves three colours. Ben-Ari’s later solution is based on the same
algorithm, but it only uses two colours, and the proof is therefore simpler. Alternative
proofs of Ben-Ari’s algorithm were then later published by Van de Snepscheut [6] and
Pixley [17]. All of these proofs were informal pencil and paper proofs. Ben-Ari defends
this as follows:

So as not to obscure the main ideas, the exposition is limited to the critical
facets of the proof. A mechanically verifiable proof would need all sorts of
trivial invariants . . . and elementary transformations of our invariants (. . . with
appropriate adjustments of the indices).

These four pieces of work, however, indeed show the problem with handwritten
proofs, as pointed out by Russinoff [18]; the story goes as follows. Dijkstra, Lamport
et al. [7] explained how they (as an example of a “logical trap”) originally proposed a
modification to the algorithm where the mutator instructions were executed in reverse
order (colouring before pointer redirection). This claim was, however, wrong, but was
discovered by the authors before the proof reached publication. Ben-Ari then later again
proposed this modification and argued for its correctness without discovering its flaw.
Counter examples were later given in [17] and [6].

Furthermore, although Ben-Ari’s algorithm (which is the one we verify in PVS) is
correct, his proof of the safety property was flawed. This flaw was essentially repeated
in [17] where it yet again survived the review process, and was only discovered 10 years
after when Russinoff detected the flaw during his mechanical proof [18]. As if the story
was not illustrative enough, Ben-Ari also gave a proof of a liveness property (every
garbage node will eventually be collected), and again: this was flawed as later observed
in [6]. To put this story of flawed proofs into a context, we shall cite [18]:

Our summary of the story of this problem is not intended as a negative com-
mentary on the capability of those who have contributed to its solution, all of
whom are distinguished scientists. Rather, we present this example as an illus-
tration of the inevitability of human error in the analysis of detailed arguments
and as an opportunity to demonstrate the viability of mechanical program ver-
ification as an alternative to informal proof.

We first informally describe the algorithm. Then we formalize it in PVS as a state
transition system similar to the models of, for example, UNITY [5] and TLA [14].
We then outline the PVS proof of the safety property; the paper contains the complete
set of invariants and lemmas needed, some of which appear in appendix A. The proof
resembles closely the proof in [18] and has the same invariants. We have also verified
a finite state version of the garbage collector in the Stanford Murphi model checker
[15], and we comment on this extra experiment. The full Murphi code is contained in
appendix B.

A main observation is that the PVS proof is surprisingly complex compared to the
size of the algorithm proved. It is therefore an excellent case study for the development
of techniques that are supposed to automate theorem proving, for example invariant
strengthening techniques [4, 3], and abstraction techniques [2, 8]. In [12] we have doc-
umented a refinement proof in PVS of the same algorithm. Another observation is that
Murphi’s execution model forced us to take some concrete design decisions, that could
be left undecided and abstract in the PVS specification and proof. Also, we could only
verify the algorithm for a particular very small memory with fixed bounds. The fact that
the verification of such a small memory causes state explosion also seems a challenge.
The advantage of Murphi is of course that it is automatic.

2 Informal Specification

In this section we informally describe the garbage collection algorithm. As illustrated
in figure 1, the system consists of two processes, the mutator and the collector, working
on a shared memory.

Mutator Collector

1
2
3

0

4

0 1 2 3

3

1 4
NODES = 5

SONS = 4

ROOTS = 2

Fig. 1. The Mutator, Collector and Shared Memory

The Memory

The memory is a fixed size array of nodes. In the figure there are 5 nodes (rows) num-
bered 0 – 4. Associated with each node is an array of uniform length of cells. In the

figure there are 4 cells per node, numbered 0 – 3. A cell is hence identified by a pair
of integers (� ,

�
) where � is a node number and where

�
is called the index. Each cell

contains a pointer to a node, called the son. In the case of a LISP system, there are for
example two cells per node. In the figure we assume that all empty cells contain the
NIL value 0, hence points to node 0. In addition, node 0 points to node 3 (because cell
(0,0) does so), which in turn points to nodes 1 and 4. Hence the memory can be thought
of as a two-dimensional array, the size of which is determined by the positive integer
constants NODES and SONS. To each node is associated a colour, black or white, which
is used by the collector in identifying garbage nodes.

A pre-determined number of nodes, defined by the positive integer constant ROOTS,
is defined as the roots, and these are kept in the initial part of the array (they may be
thought of as static program variables). In the figure there are two such roots, separated
from the rest with a dotted line. A node is accessible if it can be reached from a root by
following pointers, and a node is garbage if it is not accessible. In the figure nodes 0,
1, 3 and 4 are therefore accessible, and 2 is garbage.
There are only three operations by which the memory structure can be modified:

– Redirect a pointer towards an accessible node.
– Change the colour of a node.
– Append a garbage node to the free list.

In the initial state, all pointers are assumed to be 0, and nothing is assumed about the
colours.

The Mutator

The mutator corresponds to the user program and performs the main computation. From
an abstract point of view, it continuously changes pointers in the memory; the changes
being arbitrary except for the fact that a cell can only be set to point to an already
accessible node. In changing a pointer the “previously pointed-to” node may become
garbage, if it is not accessible from the roots in some alternative way. In the figure,
any cell can hence be modified by the mutator to point to anything else than 2. One
should think that only accessible cells could be modified, but the algorithm can in fact
be proved safe without that restriction. Hence the less restricted context as possible is
chosen. The algorithm is as follows:

1. Select a node � , an index
�
, and an accessible node � , and assign � to cell (� ,

�
).

2. Colour node � black. Return to step 1.

Each of the two steps are regarded as atomic instructions.

The Collector

The collector’s purpose is purely to collect garbage nodes, and put them into a free list,
from which the mutator may then remove them as they are needed during dynamic stor-
age allocation. Associated with each node is a colour field, that is used by the collector

during it’s identification of garbage nodes. Basically it colours accessible nodes black,
and at a certain point it collects all white nodes, which are then garbage, and puts them
into the free list. Figure 1 illustrates a situation at such a point: only node 2 is white
since only this one is garbage. The collector algorithm is as follows:

1. Colour each root black.
2. Examine each pointer in succession. If the source is black and the target is white,

colour the target black.
3. Count the black nodes. If the result exceeds the previous count (or if there was no

previous count), return to step 2.
4. Examine each node in succession. If a node is white, append it to the free list; if it

is black, colour it white. Then return to step 1.

Steps 1–3 constitutes the marking phase and it’s purpose is to blacken all accessible
nodes. Each iteration within each step is regarded as an atomic instruction. Hence, for
example, step two consists of several atomic instructions, each counting (or not) a single
node.

The Correctness Criteria

The safety property we want to verify is the following: No accessible node is ever ap-
pended to the free list. In [18], the following liveness property is also verified: Every
garbage node is eventually collected. As in our previous work with a protocol verifica-
tion in PVS and Murphi [11], we have focused only on safety, since already this requires
an effort worth reducing.

3 Formalization in PVS

We have followed the formalization of the algorithm in [18] as much as possible; we
have for example used the same names for most of the concepts introduced. This was
done in order to create a better basis for comparison, and to avoid introducing errors
ourself. We did in fact consider reducing the number of atomic instructions in Rusinoff’s
formalization, since there seems to be more than in the informal algorithm (some of
them are “just” test-and-goto instructions). However, with no changes we feel being on
“safe ground”.

3.1 The Memory

Basic Memory Operations The memory type is introduced in a theory, parameterized
with the memory boundaries, see the figure 2 below. That is, NODES, SONS, and ROOTS
define respectively the number of nodes (rows), the number of sons (columns/cells) per
node, and the number of nodes that are roots. They must all be positive natural numbers
(different from �). There is also an obvious assumption that ROOTS is not bigger than
NODES.

The Memory type is defined as an abstract (non-empty) type upon which a constant
and four functions are defined using the AXIOM construct (an alternative would have

Memory[NODES:posnat,SONS:posnat,ROOTS:posnat] : THEORY
BEGIN
ASSUMING
roots_within : ASSUMPTION ROOTS <= NODES

ENDASSUMING

Memory : TYPE+
NODE : TYPE = nat
INDEX : TYPE = nat
Node : TYPE = � n : NODE | n < NODES �
Index : TYPE = � i : INDEX | i < SONS �
Root : TYPE = � r : NODE | r < ROOTS �
Colour : TYPE = bool

null_array : Memory
colour : [NODE -> [Memory -> Colour]]
set_colour : [NODE,Colour -> [Memory -> Memory]]
son : [NODE,INDEX -> [Memory -> NODE]]
set_son : [NODE,INDEX,NODE -> [Memory -> Memory]]

m : VAR Memory
n,n1,n2,k : VAR Node
i,i1,i2 : VAR Index
c : VAR Colour

mem_ax1 : AXIOM son(n,i)(null_array) = 0

mem_ax2 : AXIOM colour(n1)(set_colour(n2,c)(m)) =
IF n1=n2 THEN c ELSE colour(n1)(m) ENDIF

mem_ax3 : AXIOM colour(n1)(set_son(n2,i,k)(m)) = colour(n1)(m)

mem_ax4 : AXIOM son(n1,i1)(set_son(n2,i2,k)(m)) =
IF n1=n2 AND i1=i2 THEN k ELSE son(n1,i1)(m) ENDIF

mem_ax5 : AXIOM son(n1,i)(set_colour(n2,c)(m)) = son(n1,i)(m)
END Memory

Fig. 2. The Memory

been to define the memory explicitly as a function from pairs of nodes and indexes to
nodes). First, however, some types of nodes, indexes and roots are defined. The types
NODE and INDEX are defined just by the natural numbers. Our functions will be applied
to arguments of these types.

The types Node and Index are the constrained versions where only natural num-
bers below respectively NODES and SONS are considered. These latter constrained
types are used in axioms where universally quantified variables range over them: we
only want our functions to behave correctly within the boundaries of the memory. In
addition the type Colour represents black with TRUE and white with FALSE.

The reason for not using the constrained types in the signatures of functions is that
if we did, the PVS type checker would generate TCC’s that we could not prove without
considering the execution traces that lead to the application of these functions. In fact,
some of the invariants that we shall later prove states exactly that these functions are
indeed only applied to values that lie within the constrained types. If one really wants
to catch such “errors” using type checking, then one needs to define a subtype of well-
formed states of the state type that we later will introduce. This, however, is not simple,

and may involve strengthening of this well-formedness predicate during the proof of
TCC’s. We rather prefer to have a PVS specification type checked quickly without too
deep proofs.

The memory is read and modified via four functions, and a constant null array
represents the initial memory containing 0 in all memory cells (axiom mem ax1). The
function colour returns the colour of a node. The function set colour assigns a
colour to a node. The function son returns the pointer contained in a particular cell.
That is, the expression son(n,i)(m) returns the pointer contained in the cell identi-
fied by node n and index i. Finally, the function set son assigns a pointer to a cell.
That is, the expression set son(n,i,k)(m) returns the memory m updated in cell
(n,i) to contain (a pointer to node) k.

Accessible Nodes In this section we define what it means for a node to be accessible.
First, however, we introduce some functions on lists (figure 3).

List_Functions[T:TYPE+] : THEORY
BEGIN
last(l:list[T]|cons?(l)) : RECURSIVE T =
IF length(l)=1 THEN car(l) ELSE last(cdr(l)) ENDIF
MEASURE length(l)

last_index(l:list[T]|cons?(l)) : nat = length(l)-1

suffix(l:list[T],n:nat |n < length(l)) : RECURSIVE list[T] =
IF n=0 THEN l ELSE suffix(cdr(l),n-1) ENDIF
MEASURE length(l)

last_occurrence(x:T,l:list[T] | member(x,l)):nat =
epsilon! (idx:nat):
idx <= last_index(l) AND nth(l,idx) = x AND
(idx < last_index(l) IMPLIES NOT member(x,suffix(l,idx+1)))

END List_Functions

Fig. 3. List Functions

The function last returns the last element of a non-empty list, while the func-
tion last index returns the index of the last element in a list. So for example if l =
cons(5,cons(7,cons(9,null))), then last(l) = 9 andlast index(l)
= 2. The other two functions are used only in the proof: one taking the suffix of a list
and the other returning the index of the last occurrence of a given element in a list,
assuming it exists. The next theory (figure 4) defines the function accessible.

The function points to defines what it means for one node, n1, to point to an-
other, n2, in the memory m. The function pointed is a predicate on lists of nodes, and
is TRUE for a list if for any two successive nodes in the list, the first points to the next
in the memory. The function path is also a predicate on lists of nodes, and is TRUE for
a list if that list represents a non-empty pointed list starting with a root. Finally, a node
is accessible if it is the last element in some path.

Memory_Functions[NODES:posnat,SONS:posnat,ROOTS:posnat] : THEORY
BEGIN
ASSUMING
roots_within : ASSUMPTION ROOTS <= NODES

ENDASSUMING
IMPORTING List_Functions
IMPORTING Memory[NODES,SONS,ROOTS]

m : VAR Memory

points_to(n1,n2:NODE)(m):bool =
n1 < NODES AND n2 < NODES AND EXISTS (i:Index): son(n1,i)(m)=n2

pointed(p:list[Node])(m):bool =
length(p) >= 2 IMPLIES

FORALL (i:nat|i<last_index(p)): points_to(nth(p,i),nth(p,i+1))(m)

path(p:list[Node])(m):bool =
cons?(p) AND car(p) < ROOTS AND pointed(p)(m)

accessible(n:NODE)(m):bool =
EXISTS (p:list[Node]) : path(p)(m) AND last(p) = n

...
END Memory_Functions

Fig. 4. The Predicate accessible

Appending Garbage Nodes In this section we define the operation for appending
a garbage node to the list of free nodes, that can be allocated by the mutator. This
operation will be defined abstractly, assuming as little as possible about it’s behavior.
Note that, since the free list is supposed to be part of the memory, we could easily
have defined this operation in terms of the functions son and set son, but this would
have required that we took some design decisions as to how the list was represented
(for example where the head of the list should be and whether new elements should be
added first or last).

The definitions in figure 5 belong to the theory Memory Functions that we in-
troduced part of in figure 4.

First of all, the predicate closed holds for a memory, if no pointer points outside
the memory. The function append to free is defined by four axioms, having the
following informal explanation:

append ax1 The appending operation leaves colours unchanged.
append ax2 The appending operation returns a closed memory when applied to a such.
append ax3 In appending a garbage node, only that node becomes accessible, and the

accessibility of all other nodes stay unchanged.
append ax4 In appending a garbage node, no pointer from any other garbage node is

altered.

3.2 The Mutator and the Collector

The mutator and the collector are introduced in the theory Garbage Collector in
figure 6. First of all, each process has a program counter; the program counter of the

m : VAR Memory
n,f : VAR Node
i : VAR Index

closed(m):bool =
FORALL (n:Node): FORALL (i:Index): son(n,i)(m) < NODES

append_to_free : [NODE -> [Memory -> Memory]]

append_ax1 : AXIOM colour(n)(append_to_free(f)(m)) = colour(n)(m)

append_ax2 : AXIOM closed(m) IMPLIES closed(append_to_free(f)(m))

append_ax3 : AXIOM (NOT accessible(f)(m)) IMPLIES
(accessible(n)(append_to_free(f)(m)) IFF
(n=f OR accessible(n)(m)))

append_ax4 : AXIOM (NOT accessible(f)(m) AND NOT accessible(n)(m) AND n /= f)
IMPLIES

son(n,i)(append_to_free(f)(m)) = son(n,i)(m)

Fig. 5. The append to free Operation

mutator ranges over the type MuPC having two values, while the program counter of
the collector ranges over the type CoPC having nine values. The state type is defined
as a record type, which contains the program counters, the memory M, and a number of
other auxiliary variables (the Q variable is used by the mutator, while BC, OBC, H, I, J,
K and L are used by the collector as will be explained below). The initial values of the
state variables are defined by the predicate initial.

Now, the mutator and the collector are each defined as a transition relation, being a
predicate on pairs of states. Hence, for example if MUTATOR(s1,s2) holds for two
states s1 and s2, it means that starting in state s1, the mutator can make a transition
into state s2. We shall below show the details of these definitions.

The global transition relation for the whole system, called next, is then defined as
the disjunction between the mutator and the collector: in each step, either the mutator
makes a move, or the collector does. This corresponds to an interleaving semantics of
concurrency.

It is finally possible to define what is a trace of the system: it is a sequence� of
states where the first state satisfies the initial predicate, and where any two consec-
utive states are related by the next relation.

The Mutator The mutator has two possible transitions, each defined as a function that
when applied to an old state yields a new state (figure 7). MUTATOR(s1,s2) then
holds for two states s1 and s2, if s2 can be obtained from s1, by applying one of the
rules.

Each transition function is defined in terms of an IF-THEN-ELSE expression,
where the condition represents the guard of the transition (the situation where the tran-

�
A sequence in PVS is modeled as a function from natural numbers to the type of the sequence
elements, in this case State. Hence a sequence here represents an infinite enumeration of
states. Sequences are defined as part of the PVS prelude.

Garbage_Collector[NODES:posnat,SONS:posnat,ROOTS:posnat] : THEORY
BEGIN
ASSUMING
roots_within : ASSUMPTION ROOTS <= NODES

ENDASSUMING
IMPORTING Memory_Functions[NODES,SONS,ROOTS]

MuPC : TYPE = � MU0,MU1 �
CoPC : TYPE = � CHI0,CHI1,CHI2,CHI3,CHI4,CHI5,CHI6,CHI7,CHI8 �

State : TYPE =
[# MU : MuPC, CHI : CoPC, Q : NODE, BC : nat, OBC : nat,

H : nat, I : nat, J : nat, K : nat, L : nat, M : Memory #]

s,s1,s2 : VAR State

initial(s):bool =
MU(s) = MU0 & CHI(s) = CHI0 & Q(s) = 0 & BC(s) = 0 & OBC(s) = 0 &
H(s) = 0 & I(s) = 0 & J(s) = 0 & K(s) = 0 & L(s) = 0 & M(s) = null_array

...

MUTATOR(s1,s2):bool = ...

COLLECTOR(s1,s2):bool = ...

next(s1,s2):bool = MUTATOR(s1,s2) OR COLLECTOR(s1,s2)

trace(seq:sequence[State]):bool =
initial(seq(0)) AND FORALL (n:nat):next(seq(n),seq(n+1))

END Garbage_Collector

Fig. 6. The Garbage Collector Components

sition may meaningfully be applied), and where the ELSE part returns the unchanged
state, in case the guard is false

�

.

The Rule mutate rule represents the modification of a pointer. It is parameterized
with the cell (m,i) to modify, and the node that this cell should hereafter point to, n.
These parameters are then existentially quantified over in the definition of MUTATOR,
corresponding to a non-deterministic choice

�

of m, i and n. The rule reads as follows:
The values m, i and n are arbitrarily selected. If the program counter is MU0, and if
the target node n is accessible, then the memory M in the state is updated; Q is set to
point to the new target node, and finally the program counter is changed to MU1. The
rule Rule colour target simply colours the target (now pointed to by Q) of the
mutation, and returns control to MU0, enabling another mutation.

�

This allows for stuttering where rules are applied without changing the state. If done infinitely
often our system would never progress. One way to avoid such behavior is to impose cer-
tain fairness constraints on execution traces. We shall, however, not do this since we are only
interested in verifying safety properties, where such problems play no role.

�

The way we model this non-deterministic choice is quite different from the way it is modeled
in [18], where the state is extended with an extra component which represents all the unknown
factors that influence the choice. There are then special transitions to update this component.

% MU0 : Redirect arbitrary pointer.

Rule_mutate(m:Node,i:Index,n:Node)(s):State =
IF MU(s) = MU0 AND accessible(n)(M(s)) THEN
s WITH [M := set_son(m,i,n)(M(s)), Q := n, MU := MU1]

ELSE s ENDIF

% MU1 : Colour target of redirection.

Rule_colour_target(s):State =
IF MU(s) = MU1 THEN

s WITH [M := set_colour(Q(s),TRUE)(M(s)), MU := MU0]
ELSE s ENDIF

% -----------------------
% Combining MUTATOR Rules
% -----------------------

MUTATOR(s1,s2):bool =
(EXISTS (m:Node,i:Index,n:Node): s2 = Rule_mutate(m,i,n)(s1))
OR s2 = Rule_colour_target(s1)

Fig. 7. The Mutator Transitions

The Collector The collector (figures 8, 9, and 10) uses the auxiliary variables BC and
OBC for counting black nodes, and H, I, J, K and L for controlling loops. The program
counter ranges over the values CHI0 to CHI8.

The Marking Phase (CHI0 . . .CHI6)

Root Blackening (CHI0) At CHI0 all the roots from 0 to ROOTS-1 are blackened.
The variable K, having the initial value 0, is used to loop through the roots. As soon
as the roots have been blackened (K = ROOTS), the propagation phase is started
by setting the program counter to CHI1.

Propagation (CHI1, CHI2, CHI3) Here all nodes from 0 to NODES-1 reachable from
a root via a pointer are blackened. The variable I, having the initial value 0, is used
to loop through the nodes. At CHI2 it is examined whether the current node is
black. If not, it is just skipped, and I is increased. If it is black, then at CHI3, all
the sons of I are blackened, using the variable J to range over indexes. When I =
NODES, all nodes have been processed, and the counting phase is started by setting
the program counter to CHI4.

Counting (CHI4, CHI5, CHI6) At CHI4 and CHI5, the black nodes are counted in
the variable BC. The variable H, having the initial value 0, is used to loop through
the nodes. When the black nodes have been counted, in CHI6, the new count BC
is compared to the previous count which is stored in OBC (old black count). If they
differ, then the propagation phase is restarted by setting the program counter to
CHI1. If they are equal, the appending phase is started at CHI7.

The Appending Phase (CHI7, CHI8) Here all white nodes are appended to the free
list, while all black nodes are just coloured white. The variable L, having the initial
value 0, is used to loop through the nodes.

% -------------
% Blacken Roots
% -------------

% CHI0 : Blacken.

Rule_stop_blacken(s):State =
IF CHI(s) = CHI0 AND K(s) = ROOTS THEN
s WITH [I := 0, CHI := CHI1]

ELSE s ENDIF

Rule_blacken(s):State =
IF CHI(s) = CHI0 AND K(s) /= ROOTS THEN
s WITH [M := set_colour(K(s),TRUE)(M(s)), K := K(s) + 1, CHI := CHI0]

ELSE s ENDIF

% -------------------
% Propagate Colouring
% -------------------

% CHI1 : Decide whether to continue propagating.

Rule_stop_propagate(s):State =
IF CHI(s) = CHI1 AND I(s) = NODES THEN
s WITH [BC := 0, H := 0, CHI := CHI4]

ELSE s ENDIF

Rule_continue_propagate(s):State =
IF CHI(s) = CHI1 AND I(s) /= NODES THEN
s WITH [CHI := CHI2]

ELSE s ENDIF

% CHI2 : (Continue) Check whether node is black.

Rule_white_node(s):State =
IF CHI(s) = CHI2 AND NOT colour(I(s))(M(s)) THEN
s WITH [I := I(s) + 1, CHI := CHI1]

ELSE s ENDIF

Rule_black_node(s):State =
IF CHI(s) = CHI2 AND colour(I(s))(M(s)) THEN
s WITH [J := 0, CHI := CHI3]

ELSE s ENDIF

% CHI3 : (Node is black) Colour each son.

Rule_stop_colouring_sons(s):State =
IF CHI(s) = CHI3 AND J(s) = SONS THEN
s WITH [I := I(s) + 1, CHI := CHI1]

ELSE s ENDIF

Rule_colour_son(s):State =
IF CHI(s) = CHI3 AND J(s) /= SONS THEN
s WITH [M := set_colour(son(I(s),J(s))(M(s)),TRUE)(M(s)),

J := J(s) + 1, CHI := CHI3]
ELSE s ENDIF

% -----------------
% Count Black Nodes
% -----------------

Fig. 8. Collector Transitions (a)

% CHI4 : Decide whether to continue counting.

Rule_stop_counting(s):State =
IF CHI(s) = CHI4 AND H(s) = NODES THEN
s WITH [CHI := CHI6]

ELSE s ENDIF

Rule_continue_counting(s):State =
IF CHI(s) = CHI4 AND H(s) /= NODES THEN
s WITH [CHI := CHI5]

ELSE s ENDIF

% CHI5 : (Continue) Count one up if black.

Rule_skip_white(s):State =
IF CHI(s) = CHI5 AND NOT colour(H(s))(M(s)) THEN
s WITH [H := H(s) + 1, CHI := CHI4]

ELSE s ENDIF

Rule_count_black(s):State =
IF CHI(s) = CHI5 AND colour(H(s))(M(s)) THEN
s WITH [BC := BC(s) + 1, H := H(s) + 1, CHI := CHI4]

ELSE s ENDIF

% CHI6 : Compare BC and OBC.

Rule_redo_propagation(s):State =
IF CHI(s) = CHI6 AND BC(s) /= OBC(s) THEN
s WITH [OBC := BC(s), I := 0, CHI := CHI1]

ELSE s ENDIF

Rule_quit_propagation(s):State =
IF CHI(s) = CHI6 AND BC(s) = OBC(s) THEN
s WITH [L := 0, CHI := CHI7]

ELSE s ENDIF

% -------------------
% Append to Free List
% -------------------

% CHI7 : Decide whether to continue appending.

Rule_stop_appending(s):State =
IF CHI(s) = CHI7 AND L(s) = NODES THEN
s WITH [BC := 0, OBC := 0, K := 0, CHI := CHI0]

ELSE s ENDIF

Rule_continue_appending(s):State =
IF CHI(s) = CHI7 AND L(s) /= NODES THEN
s WITH [CHI := CHI8]

ELSE s ENDIF

% CHI8 : (Continue) Append if white.

Rule_black_to_white(s):State =
IF CHI(s) = CHI8 AND colour(L(s))(M(s)) THEN
s WITH [M := set_colour(L(s),FALSE)(M(s)), L := L(s) + 1,CHI := CHI7]

ELSE s ENDIF

Rule_append_white(s):State =
IF CHI(s) = CHI8 AND NOT colour(L(s))(M(s)) THEN
s WITH [M := append_to_free(L(s))(M(s)), L := L(s) + 1, CHI := CHI7]

ELSE s ENDIF

Fig. 9. Collector Transitions (b)

% -------------------------
% Combining COLLECTOR Rules
% -------------------------

COLLECTOR(s1,s2):bool =
s2 = Rule_stop_blacken(s1)

OR s2 = Rule_blacken(s1)
OR s2 = Rule_stop_propagate(s1)
OR s2 = Rule_continue_propagate(s1)
OR s2 = Rule_white_node(s1)
OR s2 = Rule_black_node(s1)
OR s2 = Rule_stop_colouring_sons(s1)
OR s2 = Rule_colour_son(s1)
OR s2 = Rule_stop_counting(s1)
OR s2 = Rule_continue_counting(s1)
OR s2 = Rule_skip_white(s1)
OR s2 = Rule_count_black(s1)
OR s2 = Rule_redo_propagation(s1)
OR s2 = Rule_quit_propagation(s1)
OR s2 = Rule_stop_appending(s1)
OR s2 = Rule_continue_appending(s1)
OR s2 = Rule_black_to_white(s1)
OR s2 = Rule_append_white(s1)

Fig. 10. Collector Transitions (c)

4 Theorem Proving in PVS

In this section we outline the proof of correctness for the garbage collector algorithm.
First, we formulate in PVS what it means for the collector to be safe. We then outline the
technique we have applied to master the relatively big size of the proof. This technique
seems general and useful for verifying safety properties since it divides the proof into
manageable lemmas. Then we introduce some auxiliary functions (concepts) that are
needed during the proof; and finally, we outline the proof itself by listing the needed
invariants.

4.1 Formulating the Safety Property

Let us recall the safety property: no accessible node is ever appended to the free list. As
can be seen from the collector algorithm in figure 9, the append to free operation
is only applied at location CHI8 (in the rule Rule append white). It is applied to
the node L(s), but only if this node is white: NOT colour(L(s))(M(s)). Hence,
the correctness criteria can be stated as: Whenever the program counter is CHI8, and
L is accessible, then L is black (and will hence not be appended). This is stated in the
theory in figure 11.

The theory defines two predicates and a theorem: the correctness criteria. The pred-
icate invariant takes as argument a predicate p on states (pred[State] is short
for the function space [State -> bool]). It returns TRUE if for any execution
trace tr of the program: the predicate p holds in every position of that trace. The safety
property we want to verify is defined by the predicate safe. The correctness criteria is
then defined by the theorem named safe. The dots ... in the theory refers to extra

Garbage_Collector_Proof[NODES:posnat,SONS:posnat,ROOTS:posnat] : THEORY
BEGIN
ASSUMING
roots_within : ASSUMPTION ROOTS <= NODES

ENDASSUMING
IMPORTING Garbage_Collector[NODES,SONS,ROOTS]

invariant(p:pred[State]):bool =
FORALL (tr:(trace)): FORALL (n:nat):p(tr(n))

...
safe(s:State):bool =
CHI(s) = CHI8 AND accessible(L(s))(M(s)) IMPLIES colour(L(s))(M(s))

safe : THEOREM invariant(safe)
END Garbage_Collector_Proof

Fig. 11. The Safety Property

invariants that we needed to add (and prove), in order to prove safe (via what we call
invariant strengthening).

4.2 The Proof Technique

We now sketch the principle behind the proof technique we applied. All definitions
that follow are defined in the theory Garbage Collector Proof, which we show
part of in figure 11. The predicate we want to prove true in all accessible states is the
predicate safe of figure 11. However, this invariant needs to be greatly strengthened
(extended) in order to be provable. This extension will be discovered in a stepwise
manner during the proof, and not at once.

In principle we could then just go ahead with the proof and extend the invariant
whenever we find it necessary. This does, however, in general (for non-trivial examples)
lead to a big and unhandy invariant. Also, if we keep extending the invariant as we need,
we have to stop the prover for each extension (since we now modify one of the formulae)
and then redo what we already had succeeded with. This turns out to be painful and
unnecessary. Instead, we split the invariant into lemmas as shall be illustrated below.

The technique allows in addition the (proofs of) sub-invariants to mutually depend
on each other in a circular way. For example, suppose that we want to prove the invariant

�

� , and that we discover that we need to prove
�

� first, and that further the proof of
�

�

depends on the truthness of
�

� . Of course this is not a problem if we simply proved
that the conjunction

�

�
� �

� is an invariant. However, as just stated, we don’t want
to work with this (potentially big) conjunct, and the proofs of

�

� and
�

� have to be
split into lemmas in such a way that this recursion is allowed (note that PVS does
not directly allow two lemmas to refer to each other – in their proofs that is). Figure
12 outlines (an illustrative subset of) the definitions and lemmas that we add to the
Garbage Collector Proof theory in figure 11.

The functions IMPLIES and & are just the corresponding boolean operators lifted
to work on state predicates. Next, we define the predicate preserved, with which we
can state that a property p is inductive wrt. our program — relative to some invariant
I. That is, the expression preserved(I)(p) is true if the predicate p is true in the

Garbage_Collector_Proof[NODES:posnat,SONS:posnat,ROOTS:posnat] : THEORY
BEGIN
...
IMPLIES(p1,p2:pred[State]):bool = FORALL (s:State): p1(s) IMPLIES p2(s);

&(p1,p2:pred[State]):pred[State] = LAMBDA (s:State): p1(s) AND p2(s)

preserved(I:pred[State])(p:pred[State]):bool =
(initial IMPLIES p) AND
FORALL (s1,s2:State): I(s1) AND p(s1) AND next(s1,s2) IMPLIES p(s2)

s : VAR State

inv1(s):bool = ...
inv2(s):bool = ...
I : pred[State]
pi : [pred[State] -> bool] = preserved(I)

i_inv1 : LEMMA I IMPLIES inv1
i_inv2 : LEMMA I IMPLIES inv2
i_safe : LEMMA I IMPLIES safe
p_inv1 : LEMMA pi(inv1)
p_inv2 : LEMMA pi(inv2)
p_safe : LEMMA pi(safe)
p_I : LEMMA pi(I)
correct : LEMMA invariant(I)

END Garbage_Collector_Proof

Fig. 12. The Proof

initial state, and if p is preserved by the next-step relation, under the assumption that
the property I holds in the pre-state.

Now we let this I be defined as unknown, and let pi be an instantiation of preserved
with this I. This I is now supposed to represent the unknown final invariant that we are
looking for. For each new invariant we add (like inv1 and inv2 – there are 19 in total),
we add three declarations: the definition of the invariant predicate (fx. inv1); a lemma
stating that this invariant is implied by I (fx. i inv1), and finally that the predicate is
inductive (fx. p inv1) � . Then during the proof of any pi(...) lemma, we can refer
to all the (up to that point introduced) invariants via the I IMPLIES ... lemmas.

Finally, when all invariants have been discovered (no new are needed), we can define
I as the conjunction of all the introduced invariants – there are 19 in our case, however
inv13, inv16 and safe are logically implied by the rest:

I : pred[State] = inv1 & inv2 & inv3 & inv4 & inv5 & inv6 & inv7 & inv8
& inv9 & inv10 & inv11 & inv12 & inv14 & inv15 & inv17 & inv18 & inv19

With this definition all the I IMPLIES ... lemmas can now be proved. Fur-
thermore, we can prove the pi(I) lemma, which directly leads to the proof of the
invariant(I) lemma, which again leads to the correctness of the invariant(safe)
lemma, and we are done.

The verification of the protocol has been automated as far as possible by defining
a set of tactics. One can say that the proof of the 20 invariants is (almost) automated

�
It turns out that some invariants are logical consequences of others, and that for these we can
avoid reasoning about the transition relation and just prove the implication.

“up to” lemmas. That is: if some invariant is provable given explicitly as assumptions
the other invariants and lemmas it depends on, then it is proved automatically using
a single tactic. The obtained level of automatization could be achieved only because
of the flexibility provided by the PVS decision procedures. When we say almost auto-
mated, it means that in some few cases, we needed to assist the prover – always because
the PVS (inst?) command did not get instantiations right. The program contains 20
transitions, and with 20 invariants this gives 400 (20*20) proofs, and of these 6 needed
manual assistance (two transitions in the proof of inv15 and four in inv17), corre-
sponding to

�������
% automatization. It should though be said that the proofs of lemmas

about auxiliary functions were in general not automatic.

Memory_Observers[NODES:posnat,SONS:posnat,ROOTS:posnat] : THEORY
BEGIN
ASSUMING
roots_within : ASSUMPTION ROOTS <= NODES

ENDASSUMING
IMPORTING Memory_Functions[NODES,SONS,ROOTS]

m : VAR Memory

<(p1,p2:[NODE,INDEX]):bool =
LET n1 = PROJ_1(p1), i1 = PROJ_2(p1), n2 = PROJ_1(p2), i2 = PROJ_2(p2) IN

n1 < n2 OR (n1 = n2 AND i1 < i2);

<=(p1,p2:[NODE,INDEX]):bool = p1 < p2 OR p1 = p2

blacks(l,u:NODE)(m) : RECURSIVE nat =
IF l < u AND l < NODES THEN

IF colour(l)(m) THEN 1 ELSE 0 ENDIF + blacks(l+1,u)(m)
ELSE 0 ENDIF
MEASURE abs(u-l)

black_roots(u:NODE)(m):bool = FORALL (r:Root| r < u): colour(r)(m)

bw(n:NODE,i:INDEX)(m):bool =
n < NODES AND i < SONS AND colour(n)(m) AND NOT colour(son(n,i)(m))(m)

exists_bw(n1:NODE,i1:INDEX,n2:NODE,i2:INDEX)(m):bool =
EXISTS (n:Node,i:Index):
bw(n,i)(m) AND NOT (n,i) < (n1,i1) AND (n,i) < (n2,i2)

propagated(m):bool = NOT exists_bw(0,0,NODES,0)(m)

blackened(l:NODE)(m):bool =
FORALL (n:Node|l <= n): accessible(n)(m) IMPLIES colour(n)(m)

END Memory_Observers

Fig. 13. Auxiliary Functions

During the proof, a collection of auxiliary functions � are needed, mostly in order to
formulate the new invariants, that are introduced to prove the original invariant. These
functions are introduced in figure 13.

�
These functions were not spelled out in [18], although their informal descriptions were given.
Furthermore, no properties about these functions were presented.

inv1(s) :bool = I(s) <= NODES AND ((CHI(s)=CHI2 OR CHI(s)=CHI3)
IMPLIES I(s) < NODES)

inv2(s) :bool = J(s) <= SONS

inv3(s) :bool = K(s) <= ROOTS

inv4(s) :bool = H(s) <= NODES AND (CHI(s)=CHI5 IMPLIES H(s) < NODES) AND
(CHI(s)=CHI6 IMPLIES H(s) = NODES)

inv5(s) :bool = L(s) <= NODES AND (CHI(s)=CHI8 IMPLIES L(s) < NODES)

inv6(s) :bool = Q(s) < NODES

inv7(s) :bool = closed(M(s))

inv8(s) :bool = (CHI(s)=CHI4 OR CHI(s)=CHI5)
IMPLIES BC(s) <= blacks(0,H(s))(M(s))

inv9(s) :bool = CHI(s)=CHI6 IMPLIES BC(s) <= blacks(0,NODES)(M(s))

inv10(s):bool = (CHI(s)=CHI0 OR CHI(s)=CHI1 OR CHI(s)=CHI2 OR CHI(s)=CHI3)
IMPLIES OBC(s) <= blacks(0,NODES)(M(s))

inv11(s):bool = (CHI(s)=CHI4 OR CHI(s)=CHI5 OR CHI(s)=CHI6)
IMPLIES OBC(s) <= BC(s) + blacks(H(s),NODES)(M(s))

inv12(s):bool = BC(s) <= NODES

inv13(s):bool = CHI(s)=CHI6 IMPLIES OBC(s) <= BC(s)

inv14(s):bool = (CHI(s)=CHI0 OR CHI(s)=CHI1 OR CHI(s)=CHI2 OR CHI(s)=CHI3 OR
CHI(s)=CHI4 OR CHI(s)=CHI5 OR CHI(s)=CHI6) IMPLIES
black_roots(IF CHI(s)=CHI0 THEN K(s) ELSE ROOTS ENDIF)(M(s))

inv15(s):bool = FORALL (n:Node,i:Index):
(((CHI(s)=CHI1 OR CHI(s)=CHI2 OR CHI(s)=CHI3) AND
blacks(0,NODES)(M(s)) = OBC(s) AND
(n,i) < (I(s),IF CHI(s)=CHI3 THEN J(s) ELSE 0 ENDIF) AND
bw(n,i)(M(s)))
IMPLIES (MU(s)=MU1 AND son(n,i)(M(s))=Q(s)))

inv16(s):bool = ((CHI(s)=CHI1 OR CHI(s)=CHI2 OR CHI(s)=CHI3) AND
blacks(0,NODES)(M(s)) = OBC(s) AND
exists_bw(0,0,I(s),IF CHI(s)=CHI3 THEN J(s) ELSE 0 ENDIF)(M(s)))
IMPLIES MU(s)=MU1

inv17(s):bool = ((CHI(s)=CHI1 OR CHI(s)=CHI2 OR CHI(s)=CHI3) AND
blacks(0,NODES)(M(s)) = OBC(s) AND
exists_bw(0,0,I(s),IF CHI(s)=CHI3 THEN J(s) ELSE 0 ENDIF)(M(s)))
IMPLIES

exists_bw(I(s),IF CHI(s)=CHI3 THEN J(s)
ELSE 0 ENDIF,NODES,0)(M(s))

inv18(s):bool = ((CHI(s)=CHI4 OR CHI(s)=CHI5 OR CHI(s)=CHI6) AND
OBC(s) = BC(s) + blacks(H(s),NODES)(M(s)))
IMPLIES blackened(0)(M(s))

inv19(s):bool = (CHI(s)=CHI7 OR CHI(s)=CHI8) IMPLIES blackened(L(s))(M(s))

Fig. 14. Invariants

The predicates < and <= define lexicographic ordering on node-index pairs, where
each such pair identifies a cell in our memory. The projection function PROJ i (for i ��������	�

) selects the i’th component of a tuple. Hence, for example (2,3) < (3,0).
The rest of the functions are explained as follows. The expressionblacks(l,u)(m)

returns the number of black nodes between l (included) and u (excluded). In particu-
lar, blacks(0,NODES)(m) represents the total number of black nodes in the mem-
ory m. The expression black roots(u)(m) returns true if all the nodes below u
are black. In particular, black roots(ROOTS)(m) if all roots are black. The ex-
pression bw(n,i)(m) returns true if node n is black and the son of cell (n,i) is
white. The expression exists bw(n1,i1,n2,i2)(m) returns true if there exists
a pointer between (n1,i1) and (n2,i2) from a black node to a white node. The
expression propagated(m) returns true if no black node points to a white node. Fi-
nally, blackened(l)(m) returns true if all nodes above (and including) l are black
if they are accessible.

55 lemmas are needed (and proved) about these functions in order to carry out the
proof of the safety property. In addition, 15 lemmas about various general list processing
functions are needed. These lemmas are given in appendix A. This should be compared
to Russinoff’s ”over one hundred lemmas characterizing the behavior of relevant func-
tions” in [18]. The invariants defined and proved are given in figure 14. These are the
same as in [18]. The proof took 1.5 months of effort.

5 Model Checking in Murphi

In this section, we shortly outline our experience with encoding the garbage collector
in the Murphi model checker [15]. The full formal Murphi program is contained in
appendix B.

Murphi uses a program model that is similar to those of UNITY [5] and TLA [14],
hence the one we have used in our PVS specification. A Murphi program has three
components: a declaration of the global variables, a description of the initial state, and
a collection of transition rules. Each transition rule is a guarded command that consists
of a boolean guard expression over the global variables, and a deterministic statement
that changes the global variables. In addition, one can state invariant conditions to be
verified.

An execution of a Murphi program is obtained by repeatedly (1) arbitrarily select-
ing one of the transition rules where the boolean guard is true in the current state;
(2) executing the statement of the chosen transition rule. The statement is executed
atomically: no other transition rules are executed in parallel. Thus state transitions are
interleaving and processes communicate via shared variables. The notion of process is
not formally supported, but may be thought of as a subset of the transition rules. The
Murphi verifier tries to explore all reachable states in order to ensure that all invariants
hold. If a violation is detected, Murphi generates a violating trace.

The reader is referred to the appendix for the details of the model. Here we shall
focus on the differences between the PVS model and the Murphi model. The two prin-
cipal advantages of PVS are that (1): in PVS we can verify a parameterized program,
whereas in Murphi we are limited to a finite state program; and: (2) in PVS we can

be abstract at the algorithmic level, whereas in Murphi we have to make certain design
choices. The advantage of Murphi is that verification is automatic, whereas in PVS we
have to manually assist the proof.

Infinite Versus Finite State

The first obvious difference concerns the size of the memory. In PVS, the boundaries
(NODES, SONS and ROOTS) are unspecified parameters (figure 2), hence the correct-
ness does not depend on their specific values. The garbage collector is therefore verified
for any size of memory. In the Murphi program, on the other hand, we have to fix the
boundaries to particular natural numbers. In our case, we verified the algorithm with the
following values: NODES = 3, SONS = 2 and ROOTS = 1 (figure 15). In this context,
Murphi used 803 seconds to verify the invariant, exploring 415633 states. It turned out
that Murphi was unable to verify bigger memories within reasonable time (24 hours).
An experiment with 4 nodes, two sons and two roots had not terminated after 25 hours
and over 5 million states visited.

Const
NODES : 3; SONS : 2; ROOTS : 1;

Type
Node : 0..NODES-1; Index : 0..SONS-1; Colour : boolean;
NodeStruct : Record colour : Colour; cells : Array[Index] Of Node; End;

Var
M : Array[Node] Of NodeStruct;

Function colour(n:Node):Colour;
Begin Return M[n].colour; End;

Procedure set_colour(n:Node;c:Colour);
Begin M[n].colour := c; End;

Function son(n:Node;i:Index):Node;
Begin Return M[n].cells[i]; End;

Procedure set_son(n:Node;i:Index;k:Node);
Begin M[n].cells[i] := k; End;

Fig. 15. The Memory

Abstractness of Memory

The PVS memory is abstractly specified in terms of a set of axioms (figure 2). Although
we think of the memory as an array of two dimensions, this is in fact not required by
an implementation. In the Murphi program, on the other hand, we need to choose an
implementation of the memory, and we have chosen to model it as a two dimensional
array as illustrated in figure 15.

Abstractness of the Append Operation

The PVS append operation is abstractly specified in terms of a set of axioms (figure
5). Hence we have made no decisions for example as to where is the head of the free
list, or whether to append elements first or last. In Murphi we are obliged to take such
decisions. Figure 16 shows how we have chosen cell (0,0) to be the head of the list,
such that new elements are added to the front.

Procedure append_to_free(new_free:Node);
Var old_first_free : Node;
Begin
old_first_free := son(0,0); set_son(0,0,new_free);
For i:Index Do set_son(new_free,i,old_first_free) EndFor;

End;

Fig. 16. The append to free Operation

Function accessible(n:Node):boolean;
Type Status : Enum � TRY,UNTRIED,TRIED � ;
Var status : Array[Node] Of Status; s : Node; try_again : boolean;
Begin
For k:Node Do status[k] := (is_root(k) ? TRY : UNTRIED) EndFor;
try_again := true;
While try_again Do

try_again := false;
For k:Node Do

If status[k]=TRY Then
For j:Index Do

s := son(k,j);
If status[s]=UNTRIED Then status[s] := TRY; try_again := true; End;

EndFor;
status[k] := TRIED;

End;
EndFor;

End;
Return status[n]=TRIED

End;

Fig. 17. The accessible Predicate

Abstractness of the Accessibility Predicate

The PVS accessible predicate is specified in an abstract manner using existential
quantification over paths (figure 4). Such a formulation is not possible in Murphi, where
we have to code an algorithm that marks nodes already visited during the examination
of accessible nodes. This is to avoid a looping behavior in case of cyclic accessibility in
the memory. Figure 17 illustrates the algorithm.

6 Observations

The properties that we formulated and proved in PVS can be divided into two classes:
invariants and properties about auxiliary functions; we call the latter just lemmas. There
were 20 invariants, the same as in [18], and there were 70 lemmas, whereas [18] has
over 100. It’s however not clear what the reason for this reduction is, since [18] does
not contain the lemmas. 98.5% of our invariant proofs were automatic, once the lemmas
and other invariants needed as assumptions were identified. That is, observing that the
program has 20 possible transitions and that there were 20 invariants, there were hence
20*20 = 400 transition proofs, whereof 6 needed manual assistance. The assistance al-
ways consisted of guiding the instantiation of universally quantified assumptions when
the PVS (inst?) command did not succeed in finding the right instantiations. Many
of the lemmas needed manual assistance.

The general approach to the proof of an invariant was as follows. The proof would
typically fail, the result being a set of unproved sequents. Basically, a generalization of
the conjunction of these sequents would form the new invariant to prove, and the process
continued. This style of proof was also applied in [11] to a communications protocol. A
particular hard problem seems to be the occurrence of loops in this strengthening pro-
cess, implying possibly infinite strengthening. Here is where generalization is needed
in terms of introducing quantifiers into the invariant. The PVS proof took 1.5 months of
effort.

Murphi performed the proof automatically in less than 14 minutes, but we had to fix
the boundaries of the memory, and we had to make concrete implementation choices at
the algorithmic level as well as at the data type level. The size of the memory for which
the garbage collector could be model checked was so small that it could represent a
boarder case (three nodes, two sons per node, and one root), which hence may give less
confidence in what to conclude from the verification result.

We believe that this example provides a good case study for efforts to improve
theorem proving techniques as well as model checking techniques. This is mainly due
to its small size (lines of code) combined with the difficulty to prove it. The example
is in particular a challenge to invariant strengthening techniques such as [4, 3], and
abstraction techniques such as [2, 8].

Acknowledgments. Thérèse Hardin provided a stimulating environment at Laboratoire
d’Informatique de Paris 6, France, where a major part of the work was carried out. John
Rushby, Natarajan Shankar and Sam Owre received me well during my long term visit
to SRI, California, USA, and provided me with valuable comments. The Human Capital
Mobility grant through which this work was funded came into existence partly due to
Patrick Cousot (École Normale Supérieure, Paris). Recently SeungJoon Park (NASA
Ames Research Center) has provided comments on using symmetry and abstraction to
reduce the state space of the Murphi model.

References

[1] M. Ben-Ari. Algorithms for On-the-Fly Garbage Collection. ACM Toplas, 6, July 1984.
[2] S. Bensalem, Y. Lakhnech, and S. Owre. Computing Abstractions of Infinite State Sys-

tems Compositionally and Automatically. In Computer-Aided Verification, CAV’98, num-
ber 1427 in Lecture Notes in Computer Science, pages 319–331. Springer-Verlag, 1998.

[3] S. Bensalem, Y. Lakhnech, and S. Owre. InVeSt: A Tool for the Verification of Invariants. In
Computer-Aided Verification, CAV’98, number 1427 in Lecture Notes in Computer Science,
pages 505–510. Springer-Verlag, 1998.

[4] S. Bensalem, Y. Lakhnech, and H. Saı̈di. Powerful Techniques for the Automatic Gen-
eration of Invariants. In Rajeev Alur and Thomas A. Henzinger, editors, Computer-Aided
Verification, CAV ’96, number 1102 in Lecture Notes in Computer Science, pages 323–335,
New Brunswick, NJ, July/August 1996. Springer-Verlag.

[5] K.M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison Wesley,
1988.

[6] J. L. A. Van de Snepscheut. “Algorithms for On-the-Fly Garbage Collection” Revisited.
Information Processing Letters, 24, March 1987.

[7] E. W. Dijkstra, L. Lamport, A.J. Martin, C. S. Scholten, and E. F. M. Steffens. On-the-Fly
Garbage Collection: An Exercise in Cooperation. ACM, 21, November 1978.

[8] S. Graf and H. Saidi. Construction of Abstract State Graphs with PVS. In Computer-Aided
Verification, CAV’97, Lecture Notes in Computer Science. Springer-Verlag, 1997.

[9] K. Havelund, K. G. Larsen, and A. Skou. Formal Verification of an Audio/Video Power
Controller using the Real-Time Model Checker UPPAAL. BRICS, Aalborg University,
Denmark. Submitted for publication, October 1998.

[10] K. Havelund, M. Lowry, and J. Penix. Formal Analysis of a Space Craft Controller using
SPIN. In Proceedings of the 4th SPIN workshop, Paris, France, November 1998.

[11] K. Havelund and N. Shankar. Experiments in Theorem Proving and Model Checking for
Protocol Verification. In M-C. Gaudel and J. Woodcock, editors, FME’96: Industrial Ben-
efit and Advances in Formal Methods, volume 1051 of Lecture Notes in Computer Science,
pages 662–681. Springer-Verlag, 1996.

[12] K. Havelund and N. Shankar. A Mechanized Refinement Proof for a Garbage Collector.
NASA Ames Research Center. To be published, 1998.

[13] K. Havelund, A. Skou, K. G. Larsen, and K. Lund. Formal Modeling and Analysis of an
Audio/Video Protocol: An Industrial Case Study Using UPPAAL. In Proc. of the 18th
IEEE Real-Time Systems Symposium, pages 2–13, Dec 1997. San Francisco, California,
USA.

[14] L. Lamport. The Temporal Logic of Actions. Technical report, Digital Equipment Corpo-
ration (DEC) Systems Research Center, Palo Alto, California, USA, April 1994.

[15] R. Melton, D.L. Dill, C. Norris Ip, and U. Stern. Murphi Annotated Reference Manual,
Release 3.0. Technical report, Stanford University, Palo Alto, California, USA, July 1996.

[16] S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M.K. Srivas. PVS: Combining Specifi-
cation, Proof Checking, and Model Checking. In Rajeev Alur and Thomas A. Henzinger,
editors, Computer-Aided Verification, CAV ’96, number 1102 in Lecture Notes in Computer
Science, pages 411–414, New Brunswick, NJ, July/August 1996. Springer-Verlag.

[17] C. Pixley. An Incremental Garbage Collection Algorithm for Multi-mutator Systems. Dis-
tributed Computing, 3, 1988.

[18] D. M. Russinoff. A Mechanically Verified Incremental Garbage Collector. Formal Aspects
of Computing, 6:359–390, 1994.

A PVS Lemmas about
Auxiliary Functions

List_Properties[T:TYPE+] : THEORY
BEGIN
IMPORTING List_Functions[T]

e : VAR T
l,l1,l2 : VAR list[T]
p : VAR pred[T]
n,k : VAR nat

length1 : LEMMA
cons?(l) IMPLIES length(cdr(l)) = length(l)-1

length2 : LEMMA
length(append(l1,l2)) = length(l1) + length(l2)

member1 : LEMMA
member(e,l) =
EXISTS n : (n < length(l) AND nth(l,n)=e)

member2 : LEMMA
member(e,l) IMPLIES
EXISTS (x: nat):

x <= last_index(l) AND nth(l,x) = e AND
(x < last_index(l) IMPLIES

NOT member(e,suffix(l,x+1)))

car1 : LEMMA
cons?(l1) IMPLIES car(append(l1,l2)) = car(l1)

last1 : LEMMA
length(l)>=2 IMPLIES last(l)=last(cdr(l))

last2 : LEMMA
last(cons(e,null)) = e

last3 : LEMMA
(length(l) >=2 AND p(car(l)) AND NOT p(last(l)))
IMPLIES

EXISTS (i:nat|i<last_index(l)):
p(nth(l,i)) AND NOT p(nth(l,i+1))

last4 : LEMMA
cons?(l2) IMPLIES
last(append(l1,l2)) = last(l2)

last5 : LEMMA
cons?(l) IMPLIES nth(l,last_index(l)) = last(l)

suffix1 : LEMMA
(length(l) > 0 AND n <= last_index(l))
IMPLIES cons?(suffix(l, n))

suffix2 : LEMMA
(length(l) > 0 AND n <= last_index(l))
IMPLIES car(suffix(l,n)) = nth(l,n)

suffix3 : LEMMA
(length(l) > 0 AND n <= last_index(l))

IMPLIES
last(suffix(l,n)) = last(l)

suffix4 : LEMMA
n < length(l) IMPLIES
length(suffix(l,n)) = length(l) - n

suffix5 : LEMMA
n+k < length(l) IMPLIES
nth(suffix(l,n),k) = nth(l,n+k)

END List_Properties

Memory_Properties[NODES : posnat,
SONS : posnat,
ROOTS : posnat] : THEORY

BEGIN
ASSUMING
roots_within : ASSUMPTION ROOTS <= NODES

ENDASSUMING
IMPORTING List_Properties
IMPORTING Memory_Functions[NODES,SONS,ROOTS]
IMPORTING Memory_Observers[NODES,SONS,ROOTS]

abs(i:int):nat = IF i < 0 THEN -i ELSE i ENDIF

m : VAR Memory
n,n1,n2,k : VAR Node
i,i1,i2,j : VAR Index
c : VAR Colour
x : VAR nat
N,N1,N2 : VAR NODE

I,I1,I2 : VAR INDEX
l,l1,l2 : VAR list[Node]

smaller1 : LEMMA
NOT (n,i) < (0,0)

smaller2 : LEMMA
(NOT (n,i) < (k,0) AND (n,i) < (k+1,0))

IMPLIES n = k

smaller3 : LEMMA
(n,i) < (k,SONS) IFF (n,i) < (k+1,0)

smaller4 : LEMMA
(NOT (n,i) < (k,j) AND (n,i) < (k,j+1)) IMPLIES
(n,i)=(k,j)

closed1 : LEMMA
closed(null_array)

closed2 : LEMMA
closed(set_colour(n,c)(m)) = closed(m)

closed3 : LEMMA
closed(m) IMPLIES closed(set_son(n,i,k)(m))

closed4 : LEMMA
closed(m) IMPLIES son(n,i)(m) < NODES

blacks1 : LEMMA
blacks(N1,N2)(set_son(n,i,k)(m)) =
blacks(N1,N2)(m)

blacks2 : LEMMA
blacks(N1,N2)(m) <=
blacks(N1,N2)(set_colour(n,TRUE)(m))

blacks3 : LEMMA
NOT colour(n2)(m) IMPLIES

blacks(n1,n2+1)(m) = blacks(n1,n2)(m)

blacks4 : LEMMA
n1<=n2 AND colour(n2)(m) IMPLIES

blacks(n1,n2+1)(m) = blacks(n1,n2)(m) + 1

blacks5 : LEMMA
NOT colour(n1)(m) IMPLIES

blacks(n1,N2)(m) = blacks(n1+1,N2)(m)

blacks6 : LEMMA
(n1<N2 AND colour(n1)(m)) IMPLIES

blacks(n1,N2)(m) = blacks(n1+1,N2)(m) + 1

blacks7 : LEMMA
N1 <= N2 IMPLIES blacks(N1,N2)(m) <= N2-N1

blacks8 : LEMMA
(n < N1 OR n >= N2) IMPLIES
blacks(N1,N2)(set_colour(n,c)(m)) =
blacks(N1,N2)(m)

blacks9 : LEMMA
(n >= N1 AND n < N2 AND NOT colour(n)(m))

IMPLIES
blacks(N1,N2)(set_colour(n,TRUE)(m)) =
blacks(N1,N2)(m) + 1

blacks10 : LEMMA
(blacks(0,NODES)(set_colour(n,TRUE)(m)) =
blacks(0,NODES)(m))
IMPLIES colour(n)(m)

blacks11 : LEMMA
blacks(N,N)(m) = 0

black_roots1 : LEMMA
black_roots(0)(m)

black_roots2 : LEMMA
black_roots(N)(set_son(n,i,k)(m)) =
black_roots(N)(m)

black_roots3 : LEMMA
black_roots(N)(m) IMPLIES
black_roots(N)(set_colour(n,TRUE)(m))

black_roots4 : LEMMA
black_roots(n+1)(set_colour(n,TRUE)(m)) =
black_roots(n)(m)

bw1 : LEMMA
closed(m) IMPLIES
(NOT bw(n1,i1)(m) AND
bw(n1,i1)(set_son(n2,i2,k)(m)))
IMPLIES

(n1,i1)=(n2,i2)

bw2 : LEMMA
closed(m) IMPLIES
(NOT bw(n,i)(m) AND
bw(n,i)(set_colour(k,TRUE)(m)))
IMPLIES

(n=k AND NOT colour(n)(m))

bw3 : LEMMA
bw(n,i)(m) IMPLIES
colour(n)(m) AND NOT colour(son(n,i)(m))(m)

exists_bw1 : LEMMA
exists_bw(N1,I1,N2,I2)(m) IMPLIES
EXISTS (n:Node,i:Index):
bw(n,i)(m) AND
NOT (n,i) < (N1,I1) AND
(n,i) < (N2,I2)

exists_bw2 : LEMMA
closed(m) IMPLIES
(NOT exists_bw(0,0,N2,I2)(m) AND
exists_bw(0,0,N2,I2)(set_son(n,i,k)(m)))
IMPLIES

(NOT colour(k)(m) AND (n,i) < (N2,I2))

exists_bw3 : LEMMA
(accessible(n)(m) AND
NOT colour(n)(m) AND
black_roots(ROOTS)(m))
IMPLIES

exists_bw(0,0,NODES,0)(m)

exists_bw4 : LEMMA
exists_bw(0,0,NODES,0)(m) IMPLIES
exists_bw(0,0,N,I)(m) OR
exists_bw(N,I,NODES,0)(m)

exists_bw5 : LEMMA
closed(m) IMPLIES
(exists_bw(N,I,NODES,0)(m) AND (n,i) < (N,I))

IMPLIES
exists_bw(N,I,NODES,0)(set_son(n,i,k)(m))

exists_bw6 : LEMMA
closed(m) AND colour(n)(m) IMPLIES
exists_bw(N1,I1,N2,I2)(set_colour(n,TRUE)(m))
= exists_bw(N1,I1,N2,I2)(m)

exists_bw7 : LEMMA
exists_bw(0,0,N+1,0)(m) IMPLIES
exists_bw(0,0,N,SONS)(m)

exists_bw8 : LEMMA
exists_bw(N,SONS,NODES,0)(m) IMPLIES
exists_bw(N+1,0,NODES,0)(m)

exists_bw9 : LEMMA
(NOT colour(n)(m) AND exists_bw(0,0,n+1,0)(m))
IMPLIES

exists_bw(0,0,n,0)(m)

exists_bw10 : LEMMA
(NOT colour(n)(m) AND exists_bw(n,0,NODES,0)(m))
IMPLIES

exists_bw(n+1,0,NODES,0)(m)

exists_bw11 : LEMMA
(colour(son(n,i)(m))(m) AND
exists_bw(0,0,n,i+1)(m))
IMPLIES

exists_bw(0,0,n,i)(m)

exists_bw12 : LEMMA
(colour(son(n,i)(m))(m) AND
exists_bw(n,i,NODES,0)(m))
IMPLIES

exists_bw(n,i+1,NODES,0)(m)

exists_bw13 : LEMMA
NOT exists_bw(N,I,N,I)(m)

points_to1 : LEMMA
(k /= n2 AND
points_to(n1,n2)(set_son(n,i,k)(m)))
IMPLIES

points_to(n1,n2)(m)

pointed1 : LEMMA
(NOT member(k,l) AND
pointed(l)(set_son(n,i,k)(m)))
IMPLIES

pointed(l)(m)

pointed2 : LEMMA
(pointed(l)(m) AND cons?(l) AND
x <= last_index(l))
IMPLIES

pointed(suffix(l,x))(m)

pointed3 : LEMMA
pointed(cons(n,l))(m) IMPLIES pointed(l)(m)

pointed4 : LEMMA
(cons?(l) AND points_to(n,car(l))(m) AND
pointed(l)(m))
IMPLIES

pointed(cons(n,l))(m)

pointed5 : LEMMA
(cons?(l1) AND cons?(l2) AND
points_to(last(l1),car(l2))(m) AND
pointed(l1)(m) AND pointed(l2)(m))

IMPLIES
pointed(append(l1,l2))(m)

path1 : LEMMA
(path(l1)(m) AND
cons?(l2) AND
points_to(last(l1),car(l2))(m) AND
pointed(l2)(m))
IMPLIES

path(append(l1,l2))(m)

accessible1 : LEMMA
(accessible(k)(m) AND
accessible(n1)(set_son(n,i,k)(m)))
IMPLIES

accessible(n1)(m)

propagated1 : LEMMA
(cons?(l) AND pointed(l)(m) AND
colour(car(l))(m) AND propagated(m))

IMPLIES
colour(last(l))(m)

propagated2 : LEMMA
propagated(m) = NOT exists_bw(0,0,NODES,0)(m)

blackened1 : LEMMA
(accessible(k)(m) AND blackened(N)(m))

IMPLIES
blackened(N)(set_son(n,i,k)(m))

blackened2 : LEMMA
blackened(N)(m) IMPLIES
blackened(N)(set_colour(n,TRUE)(m))

blackened3 : LEMMA
(black_roots(ROOTS)(m) AND propagated(m))

IMPLIES
blackened(0)(m)

blackened4 : LEMMA
blackened(n)(m) IMPLIES
blackened(n+1)(set_colour(n,FALSE)(m))

blackened5 : LEMMA
(NOT accessible(n)(m) AND blackened(n)(m))

IMPLIES
blackened(n+1)(append_to_free(n)(m))

blackened6 : LEMMA
(blackened(n)(m) AND accessible(n)(m)) IMPLIES
colour(n)(m)

END Memory_Properties

B Murphi Formalization
Const
NODES : 3; MAX_NODE : NODES-1;
SONS : 2; MAX_SON : SONS-1 ;
ROOTS : 1; MAX_ROOT : ROOTS-1;

Type
NumberOfNodes : 0..NODES;
Colour : boolean;
Node : 0..MAX_NODE;
Index : 0..MAX_SON;
Root : 0..MAX_ROOT;
NodeStruct :
Record
colour : Colour;
cells : Array[Index] Of Node;

End;

Var
MU : Enum � MU0,MU1 � ;
CHI : Enum � CHI0,CHI1,CHI2,CHI3,CHI4,

CHI5,CHI6,CHI7,CHI8 � ;
Q : Node;

BC : NumberOfNodes; OBC : NumberOfNodes;
I,L,H : 0..NODES;
J : 0..SONS; K : 0..ROOTS;

Var M : Array[Node] Of NodeStruct;

Function colour(n:Node):Colour;
Begin Return M[n].colour; End;

Procedure set_colour(n:Node;c:Colour);
Begin M[n].colour := c; End;

Function son(n:Node;i:Index):Node;
Begin Return M[n].cells[i]; End;

Procedure set_son(n:Node;i:Index;k:Node);
Begin M[n].cells[i] := k; End;

Function is_root(n:Node):boolean;
Begin Return n < ROOTS; End;

Function accessible(n:Node):boolean;
Type
Status : Enum � TRY,UNTRIED,TRIED � ;

Var
status : Array[Node] Of Status;
s : Node; try_again : boolean;

Begin
For k:Node Do

status[k] :=
(is_root(k) ? TRY : UNTRIED)

EndFor;
try_again := true;
While try_again Do

try_again := false;
For k:Node Do
If status[k]=TRY Then

For j:Index Do
s := son(k,j);
If status[s]=UNTRIED Then

status[s] := TRY;
try_again := true;

End;
EndFor;
status[k] := TRIED;

End;
EndFor;

End;
Return status[n]=TRIED

End;

Procedure append_to_free(new_free:Node);
Var
old_first_free : Node;

Begin
old_first_free := son(0,0);
set_son(0,0,new_free);
For i:Index Do

set_son(new_free,i,old_first_free)
EndFor;

End;

Procedure initialise_memory();
Begin
For n:Node Do

set_colour(n,false);
For i:Index Do set_son(n,i,0); EndFor;

EndFor;
End;

Startstate
Begin
MU := MU0; CHI := CHI0;
clear Q; clear BC; OBC := 0;
clear I; clear J; K := 0;
clear L; clear H;
initialise_memory();

End;

-- The Mutator Process --

Ruleset m:Node; i:Index; n: Node Do
Rule "mutate"

MU = MU0 & accessible(n) ==>
set_son(m,i,n); Q := n; MU := MU1;

End;
End;

Rule "colour_target"
MU = MU1 ==>
set_colour(Q,true); MU := MU0;

End;

-- The Collector Process --

Rule "stop_blacken"
CHI = CHI0 & K = ROOTS ==>

I := 0; CHI := CHI1;
End;

Rule "blacken"
CHI = CHI0 & K != ROOTS ==>
set_colour(K,true);
K := K+1; CHI := CHI0;

End;

Rule "stop_propagate"
CHI = CHI1 & I = NODES ==>
BC := 0; H := 0; CHI := CHI4;

End;

Rule "continue_propagate"
CHI = CHI1 & I != NODES ==>
CHI := CHI2;

End;

Rule "white_node"
CHI = CHI2 & !colour(I) ==>
I := I+1; CHI := CHI1;

End;

Rule "black_node"
CHI = CHI2 & colour(I) ==>
J := 0; CHI := CHI3;

End;

Rule "stop_colouring_sons"
CHI = CHI3 & J = SONS ==>
I := I+1; CHI := CHI1;

End;

Rule "colour_son"
CHI = CHI3 & J != SONS ==>
set_colour(son(I,J),true);
J := J+1; CHI := CHI3;

End;

Rule "stop_counting"
CHI = CHI4 & H = NODES ==>
CHI := CHI6

End;

Rule "continue_counting"
CHI = CHI4 & H != NODES ==>
CHI := CHI5;

End;

Rule "skip_white"
CHI = CHI5 & !colour(H) ==>
H := H+1; CHI := CHI4;

End;

Rule "count_black"
CHI = CHI5 & colour(H) ==>
BC := BC+1; H := H+1; CHI := CHI4;

End;

Rule "redo_propagation"
CHI = CHI6 & BC != OBC ==>
OBC := BC; I := 0; CHI := CHI1;

End;

Rule "quit_propagation"
CHI = CHI6 & BC = OBC ==>
L := 0; CHI := CHI7;

End;

Rule "stop_appending"
CHI = CHI7 & L = NODES ==>
BC := 0; OBC := 0; K := 0;
CHI := CHI0;

End;

Rule "continue_appending"
CHI = CHI7 & L != NODES ==>
CHI := CHI8

End;

Rule "black_to_white"
CHI = CHI8 & colour(L) ==>
set_colour(L,false);
L := L+1; CHI := CHI7;

End;

Rule "append_white"
CHI = CHI8 & !colour(L) ==>
append_to_free(L);
L := L+1; CHI := CHI7

End;

-- Specification --

Invariant "safe"
CHI = CHI8 & accessible(L) -> colour(L);

